
S
P

R
IN

G
 2

0
1

1

26
SPRING 2011

When a draft standard is finally

sent to ANSI for ratification members of

the PLASA Technical Standards Program

breathe a collective sigh of relief. Years

of work is finally over, but for lighting

manufacturers the work is just beginning.

Around the world, engineers purchase the

standard, interpret it as best they can, and

start building the new functionality into

their next product.

Unfortunately natural languages like

English are not well suited to technical

specifications. There are often multiple

ways in which directives can be interpreted

and it is impractical to cover all possible

corner cases in the standard. Attempts to

do so would cause the document to grow

to hundreds of pages long and significantly

increase amount of time required. The

result of this means that published

standards may be vague and lacking in some

areas, leading to devices that, while arguably

technically complying with what’s written

in the standard, fail to communicate with

each other.

The PLASA Plugfests assist in addressing

this issue. Engineers from different

manufacturers meet informally and work

together to solve interoperability problems.

Every year more manufacturers realize the

benefits to be gained from the Plugfest, and

the event has seen solid growth in both the

diversity of manufacturers and the amount

of hardware available for testing.

But this approach does not scale. With

the number of responders increasing, it

is no longer feasible to perform in depth

testing of all responders during the weekend

of the Plugfest. On top of this, many

manufacturers can’t attend the Plugfests

and the six month frequency slows down

product development and bug fixes.

It became clear to a number of us in late

2010 that automated testing could be used

to solve this problem. The development

of a full compliance test would have been

prohibitively expensive and time consuming

but many of the benefits of automated

testing could be gained from an application

level RDM responder test suite.

I wrote the RDM responder tests over the

following two months and they were first

used at the January Plugfest in Texas. I’ve

since improved them to the point where

they are ready for general use; and they were

released on 6 March 2011.

The tests form part of the Open Lighting

Project (http://opendmx.net/index.php/

Open_Lighting_Project), a collection of

efforts to accelerate the adoption of new

protocols within the industry and to drive

innovation. The test platform uses the

Open Lighting Architecture software to

communicate with USB RDM devices acting

as RDM controllers as shown in Figure 1.

My software currently supports two widely

available USB RDM devices and support

for others can be added using the plugin

framework provided.

Test layout
The RDM responder suite consists of a series

of tests written in Python, each designed to

exercise a different section of a responder’s

handling code. I chose Python because the

language is simple to learn and flexible

enough to write succinct test cases. Some

tests are very simple, such as sending a

GET message and checking for a response,

while others are more complicated, such

as performing a sequence of operations on

the responder and then checking that the

responder’s state matches what was expected.

Individual tests are grouped into

categories, which correspond to the PID

groupings in the E1.20 standard. At the end

of the test suite execution each test will be

in one of four states: passed, failed, broken

(indicates a logic problem with the test

Every year more
manufacturers
realize the benefits
to be gained from
the Plugfest . . .

Automated RDM
responder testing By Simon Newton

Using open source software to save time and money

Figure 1 – Hardware and software components used for RDM responder testing

S
P

R
IN

G
 2

0
1

127
PROTOCOL

itself), or not run. Figure 2 shows the output

from a typical test run:

By Category		
Control:	 8 / 8	 100%

Sub Devices:	 1 / 1	 100%

Configuration:	 9 / 9	 100%

Product Information:	 17 / 17	 100%

Network Management:	 4 / 4	 100%

Core Functionality:	 2 / 2	 100%

Error Conditions:	 86 / 86	 100%

Display Settings:	 4 / 4	 100%

DMX512 Setup:	 9 / 9	 100%

Power / Lamp Settings:	 12 / 12	 100%

Sensors:	 6 / 6	 100%

Status Collection:	 2 / 2	 100%

160 / 162 tests run, 160 passed, 0 failed, 0 broken	

Figure 2 – RDM Responder test output for a
bug-free device

Verbose mode can be enabled by passing

the -v flag when executing the tests. This

prints out every RDM message sent and

received from the responder, as well as what

the expected response(s) are.

Warning and
advisory messages
Individual tests can also output warning

and advisory messages. While not important

enough to declare the test a failure, these

messages alert the user to possible problems

with the responder. Warning messages

indicate behavior that, while not matching

the E1.20 standard, is unlikely to cause

usability issues, for example: declaring

support for a required PID

like DEVICE_INFO in

the supported parameters

section. Advisory messages

indicate issues that are not

covered by the standard

but may cause problems

with controllers such as a

sensor temperature where

the reported value

is outside the stated

scale range.

The PLASA Control Protocols
Plugfest was developed in
January 2009, then as part of
ESTA, by members of various
Control Protocols Task Groups.
They represent a variety of
manufacturers and twice a year,
they are all in the same place
at the same time. They bring in
some lights and consoles and
lots of other bits and pieces
and, maybe not put on a show,
but get a lot of work done. The
event was originally created
to support the Remote Device
Management protocol (ANSI E1.20 RDM) and has expanded to cover all CPWG
protocols, including the popular ANSI E1.31 DMX over Ethernet protocol. As the
content grew, so did the attendance and, consequently, the space. Beginning in
a small suite in 2009, Plugfest moved this year into a large suite with room to
grow. Why not meet in a standard meeting room? Well, the schedule may say it
ends at 10:00 p.m., but the geek squad may often be found working long past
that time, often into the wee hours of the morning. They need their freedom, and
a place for bagels, scones, and coffee.

So that’s how it started. What it has become is an extremely efficient way for
manufacturers’ engineers to make sure your products will work with the products
of other manufacturers. If it doesn’t, you can find out on the spot what is wrong,
fix it, and try again. People from all over the world are bringing their gear to
Plugfest just to improve their performance. As a result, there is a huge pool of
knowledge and experience in Texas for the weekend. And most of the members
of the RDM and E1.31 task groups (they wrote the standards) are there. They are
happy to answer your questions and talk about protocols. Plugfest is one more
way that the Technical Standards Program brings colleagues and competitors
together to work on furthering our industry. Get your geek on!

The July Plugfest will run from Friday
afternoon July 22 through Sunday evening
July 24 at the DFW Marriott Solana in
Westlake, TX. If you are interested in
participating, please contact Scott Blair
at sblair@rdmprotocol.org to register.
Plugfest is open to all, but, with its
growing popularity, we have to coordinate
participation to make sure everyone has a
space at the table.

Plugfest—get your geek on!

S
P

R
IN

G
 2

0
1

1

28
SPRING 2011

Test dependencies
and ordering
Some tests require the information from

the output of other tests in order to

run correctly. As an example, a test that

enumerates the sensors needs to cross-

check the result with the number of

sensors declared in the DEVICE_INFO

message. This dependency structure is

achieved through the use of test properties.

Continuing with the sensor example, the

DeviceInfo test can declare that it provides

the sensor_count property and then the

EnumerateSensors test can declare that it

requires the sensor_count property. This

ensures that EnumerateSensors will be run

after the DeviceInfo test and that it will have

access to the required information.

On each execution of the test suite, the

available tests are topologically sorted

based on the dependency graph and then

executed. If only certain test cases are of

interest, the tests to be run can be restricted

through the use of a command line flag.

Guidelines for
writing tests
Writing good test cases can take some

practice. Along with the usual best practices

for testing there are a number of guidelines

that can make the RDM responder tests

more effective:

Tests should be strict in what they accept.

Through the use of dependencies tests can

limit the number of acceptable responses. For

example in a test for an optional PID such

as DISPLAY_INVERT, rather than simply

accepting an ack or a nack the tests can use

the output of SUPPORTED_PARAMETERS

to decide whether an ack or a nack-

unsupported-command-class is expected.

All tests should include a documentation

string. This provides comments in the code to

explain what the test is doing and is printed to

the output when verbose mode is enabled.

The dependencies of each test should be

limited to those that are strictly necessary. A

test requires all its dependencies to pass before

executing, which means the more dependencies

that are listed the lower the chance the test will

be run on a responder with bugs. This limits

the amount of useful debugging information

available during the initial test runs.

Caveats and limitations
My test suite does not check for RDM timing

issues. This is because the level of timing

information that the USB RDM controllers

provide back to the host software is limited

and I have not had the time to work with

the controller developers to export this

information. The recommended method for

testing for timing issues is to attach an RDM

sniffer to the line, run the test suite, and then

evaluate the timing information.

It should be noted that the tests are simply

my interpretation of the RDM standard.

Where the standard is unclear, I discuss the

issues with other members of the E1.20 task

group, in person or, on the RDM Protocol

forums at http://www.rdmprotocol.org/

and together we make a decision on what

the correct behavior should be. In a few rare

cases the tests will accept multiple behaviors.

Like any software, the tests themselves

may contain bugs. The tests have been run

on a variety of responders and in the event

that bugs are discovered, emailing the Open

Lighting mailing list will result in the bug

being fixed. Code patches to fix existing tests

or add new ones would be greatly appreciated.

Common mistakes
During my testing a number of responders

exhibited similar bugs. I’ve discussed them

here in the hope that other RDM developers

will avoid making the same mistakes.

The condition that results in the highest

number of test failures is inadequate

checking of parameter data, both in terms

of the request structure as well as parameter

values. Many responders neglect to perform

strict checks on this data which results in

malformed requests being treated as valid

requests rather than returning a nack format

error. While this makes the responder in

question appear to work in almost every

case, it means that bugs in controller

software can go undetected. When a

responder with strict data handling is added

to an RDM network it will then fail to work

correctly, possibly resulting in technicians

wasting time trying to debug the wrong

device. The responder test suite checks for

these conditions by sending malformed

requests to the responder and checking that

nack format errors are received.

On a similar note, another recurring fault

is buffer overruns. PIDs such as SENSOR_

DEFINITION have the ability to specify a

sensor number (offset) in the request. Some

responders omit the bounds check for these

offsets, resulting in get requests returning

data from memory which is used by other

data structures. An even more serious

problem is the lack of bounds checking for

set requests such as CAPTURE_PRESET as

this allows otherwise-inaccessible memory

locations to be set to arbitrary values. Other

bugs encountered include the handling of

non-ascii data for PIDs such as DEVICE_

LABEL, as well as dealing with empty and

full length (32 character) strings.

The broadcast (0xffffffffffff) and vendorcast

(0xmmmmffffffff) UIDs also cause problems.

Devices must never respond to any messages

sent to these UIDs but still need to take action

when sent set requests. A similar situation

applies to the SUB_DEVICE_ALL_CALL

value but in this case the device must respond

to get requests with a nack reason of SUB_

DEVICE_OUT_OF_RANGE.

Another common bug is the handling

of delayed or slow writes. Some responders

The test software is
open source which
means that code is
available and can be
modified and used
without any fees.

S
P

R
IN

G
 2

0
1

129
PROTOCOL

ack set requests even though they defer

writing the new value to persistent storage.

This means that a controller that sends a get

request immediately following the set will see

the old value and assume that the set failed.

If delayed writes are used and the responder

cannot confirm that the data has been

written to storage in the time required to

send the RDM response, an ack_timer must

be issued. This notifies the controller that the

write has not taken place and the controller

can then query for queued messages to

confirm the update.

Running the
test software
The test software can be downloaded from

the Open Lighting site http://opendmx.

net/index.php/RDM_Responder_Testing

and runs on Mac OS and Linux. It can

also be run in Windows using VMWare

(instructions are on the website). The

software and hardware required to run

the tests will also be at the July Plugfest in

Texas for others to use (see dates/times in

accompanying sidebar). The test software

is open source which means that code is

available and can be modified and used

without any fees. Manufacturers can extend

the tests to cover manufacturer specific

PIDs, avoiding the need to develop their

own test framework.

Acknowledgements
I would like to thank Hamish Dumbreck

and Eric Johnson who developed additional

firmware for the USB RDM controllers that

made this automated testing possible. n

Simon Newton
has been in te res ted
in l ight ing cont ro l
sys tems s ince midd le
schoo l and founded
the Open L ight ing
Pro jec t in 2004 wi th
the a im of acce le ra t ing
the adopt ion o f new
cont ro l p rotoco l s by
the indust ry. He i s a
member o f the Cont ro l

P rotoco l s Work ing Group and cont r ibutes to the
RDM and RDM over IP s tandards. H i s day job
f inds h im des ign ing and bu i ld ing the se rv ing
in f ras t ruc ture fo r a la rge In te rnet company in
S i l i con Va l ley. S imon can be reached at
nomis52@gmai l . com.

